
From monoliths to microservices

in the context of Cloud Computing

Origins of service-oriented architecture
• No standard for microservices
• SOA = Service-Oriented Architecture

– Principles
– Encourages reusable software components
– Components provide well-defined interfaces
– Unit = self-contained service + interface
– SOA: services should be standalone process

• Service = discrete unit of functionality, that can be accessed
remotely and independently

• Nothing about protocols
• Vague regarding organization/deployment
• First pub 2009 @https://www.soa-manifesto.org/

– No longer available

mailto:@https://www.soa-manifesto.org/

SOA : service?
• The 4 properties of a service

– It logically represents a repeatable business activity with a specified outcome
– It is self-contained
– It is a black box for its consumers, meaning the consumer does not have to be

aware of the service's inner workings
– It may be composed of other services

• Communication between services
– Inter-Process Communication (IPC)

• Sockets on the same machine
• Shared memory for message queues

– Remote Procedure Calls (RPC)
– etc.

• Microservices
– A specialization of SOA

The monolithic approach
• Concentration

– "Everything about the service is in one place"
– The same code base for:

• The API
• (Optional) database related ops
• Handling the communication with external services

• Benefits
– Single code base
– Code management simplicity
– Testing simplicity
– The possibility of single-package deployment

• Extra benefits if using cloud-based technologies
– To scale-up, run plural instances of the application
– Use some database replication solution to have the multiple databases in sync

• Examples
– Most solutions on LAMP architecture

The monolithic approach (2)
• If the app stays small

– This is a sensible approach
– Maintainable by a single team

• If big changes are needed, such as...
– The need to work with new or different external services
– Significant changes in the database layer

• The changes will impact the entire solution
– Need for testing
– Risks of collateral damage
– Uneven scale needs

• Limited scaling solutions

– With time, it gets harder and harder to decouple parts

• Mitigate some of the above
– With modular design

• The problem of dependencies management arises

The microservices approach
• "Componentize" the solution

– Organize the code in separate components
– That can run in separate processes
– Communicating via some protocol

• e.g. HTTP, with functionality available via RESTful Web Services

• For example
– Authentication, searching and reporting

• Can usually be developed as components
• These components have an API
• Can possibly work with specific databases

– The overall app communicates with them via their APIs
• How? Think on the internal interactions in the mono code

– And explicit them as visible parts
– Then question about the corresponding functions and data

The microservices approach (2)
• Tentative definition of microservices

– Lightweight application, providing a focused list of features with a
well-defined contract. It can be developed and deployed
independently.

• No compromise with HTTP and XML, JSON, whatever
– It could be binary data being exchanged via UDP

• But, many, many times, the protocol indeed is HTTP and the data is
represented in XML and/or JSON

• Benefits
– Code separation
– Focus: goals and responsibility separation

• Philosophically similar to the "single responsibility principle" (Robert
Martin)

– More scaling and deployment options
– AKA "loose coupling"

The microservices approach (3)
• Risks of microservices

– Not so good componentization
• You'll need several iterations!
• To add/remove microservices can be harder than to just work on the monolith
• Hints: if changing one service always requires changing other(s), may be they should be

together

– Increased network relevance
• Latency, speed, protocol choice become more relevant
• New choices: async or blocking calls?
• New questions: what happens if... ?

– Increased challenges in data storage and data sharing
• DB multiplication and questions regarding rights
• To (not) duplicate?
• How to remove?

– Compatibility issues
• Between microservices
• Between technologies of the different stacks in use

– Testing
• Inferno? Several new technologies try to help: K8s, Terraform, CloudFormation

microservices in Python
• Focus on dealing with

– Incoming requests
– Structuring a response
– Respond the response

• Abstract all the complicated parts
– Protocol negotiation
– Certificates
– All this is handled by the web server

• Apache HTTPD, nginx, Microsoft IIS

• Python can go beyond CGI = Common Gateway Interface
– WSGI = Web Server Gateway Interface

• There are WSGI extensions for most web servers

– ASGI = Asynchronous Server Gateway Interface

Asynchronous Python
• Built in Python, since v3.5+

– The asyncio library
– https://docs.python.org/3/library/asyncio.html

• Asynchronous framework
– Quart (very similar to Flask, but asynchronous)
– Aiohttp

• Synchronous frameworks
– Flask
– Bottle
– Pyramid
– Cornice

• These frameworks...
– Are mostly to route requests + some helpers
– So, the microservices per se should be easy to rewrite in any framewwork

• There is a risk in using synch libraries in asynch code

https://docs.python.org/3/library/asyncio.html

Referências
• TODO

