
1

In AWS, create a not-root (IAM) user and work with that user
1. Login as root

h�ps://aws.amazon.com/

2. Search for the IAM service and create a new “user group” named “admins”

Example URL:

h�ps://us-east-1.console.aws.amazon.com/iam/home?region=us-east-1#/home

3. A�ach the desired “permission policies”, in this case “AdministratorAccess”

4. In IAM, create a new user (in my case, I named it “user_educloud2024_admin”)

- provide it access to the AWS management console

- pick “I want to create an IAM user”

- set a password

- add user to group “admins”

- op�onally, apply a tag to the user, such as the meta-info “created_on”

5. Confirm the user crea�on

- Remember the user name

- Remember the user password

- Remember the 12 digits of the account ID

6. Look for “Billing and Cost Management”, usually at the upper-right corner of the browser window.

Make sure you have selected the “Global” or US East (N. Virginia) region in the AWS Management Console.

Pick that menu op�on (“Billing and Cost Management”). The URL could be something like:

h�ps://us-east-1.console.aws.amazon.com/costmanagement/home?region=us-east-1#/home

2

7. Look for and pick “Billing preferences”, usually at the le� panel

8. Ac�vate:

- CloudWatch billing alerts

- AWS Free Tier alerts Delivered to Root user email address

- PDF invoices delivery by email

9. Logout the root user

10. Login as the IAM user you just created.

3

In AWS, use the Cloud Shell to edit Python code and build a ZIP
package, to create a “cloud function”, via AWS Lambda
1. Assuming you are logged-in to AWS, launch a “Cloud Shell”

2. Create a folder for the Python code + edit a lambda_func�on.py, using the “nano” editor
mkdir <my folder>

cd <my folder>

nano lambda_func�on.py

4

3. Type the Python code at h�ps://arturmarques.com/edu/cn/files/w04/lambda_func�on.py.txt
import json
from datetime import datetime
import pytz

def lambda_handler(event, context):
 # Define the European capitals with their respective time zones
 capitals = {
 "Lisbon" : "Europe/Lisbon",
 "London": "Europe/London",
 "Paris": "Europe/Paris",
 "Berlin": "Europe/Berlin",
 "Madrid": "Europe/Madrid",
 "Rome": "Europe/Rome"
 }
 dict_params_received = event.get('queryStringParameters', {})
 city_asked = dict_params_received.get('city', None)

 if city_asked and city_asked in capitals:
 # If a specific city is requested, return its current time
 timezone = pytz.timezone(capitals[city_asked])
 current_time = datetime.now(timezone).strftime('%Y-%m-%d %H:%M:%S')
 body = {city_asked: current_time}
 else:
 # If no specific city is requested, return times for all cities
 times_in_capitals = {}
 for capital, timezone in capitals.items():
 tz = pytz.timezone(timezone)
 current_time = datetime.now(tz).strftime('%Y-%m-%d %H:%M:%S')
 times_in_capitals[capital] = current_time
 # for
 body = times_in_capitals
 # if-else
 # Return the result as a JSON object
 return {
 'statusCode': 200,
 'body': json.dumps(body)
 }
def lambda_handler

5

4. Save and exit the nano editor
CTRL^S

CTRL^X

5. The Python pytz library (for working with Time Zones) is a problem for most Python run�mes for cloud func�ons, because it is not installed, by
default
In some PaaS cases a requirements.txt file solves the issue.

In this case:

Install the pytz in the same folder where the Python source code is

pip install pytz -t .

zip the en�re folder’s contents to a ZIP file (at the parent folder in the following example):

zip -r ../cf1.zip .

6. Create a bucket to store the ZIP out of the Cloud Shell
Search for the “S3” service.

h�ps://s3.console.aws.amazon.com/s3/home?region=us-east-1

Pick “create bucket”

6

7

Just name (with a unique name) the bucket, accept all the defaults, and scroll down to create it.

I named my bucket “educloud2024bucket”.

This bucket will have an internal URL such as:

s3://your-bucket-name/

8

s3://educloud2024bucket/

7. Upload, from Cloud Shell, the ZIP file to the bucket
aws s3 cp <your zip> s3://your-bucket-name/

aws s3 cp cf1.zip s3://educloud2024bucket/

This will make the copied file available at the following example URL:

h�ps://s3.amazonaws.com/educloud2024bucket/cf1.zip

This URL will only work for authen�cated and authorized users – not a problem, because it will only be needed for an upload moment, when using the AWS Lambda service.

8. Create a Lambda func�on, to run the code in the ZIP
Search for the “Lambda” service.

h�ps://us-east-1.console.aws.amazon.com/lambda/home?region=us-east-1#/func�ons

Pick “create func�on” with a Python 3.9 run�me.

9

10

Once the func�on is created, choose “upload from” “Amazon S3 loca�on” and supply a valid URL.

I used the URL: h�ps://s3.amazonaws.com/educloud2024bucket/cf1.zip

The upload will result in file(s) and folder(s) in the Code tab. Make sure the main file is “lambda_func�on.py” and that the main func�on is “lambda_handler”.

11

12

9 . Create a HTTP API so the func�on can be HTTP triggered by some route
Look for the “API Gateway” service.

h�ps://us-east-1.console.aws.amazon.com/apigateway/main/apis?region=us-east-1

Create an HTTP “API”

13

14

10. Start by adding “Lambda” integra�on to the previously created Lambda func�on

15

11. Add a route for GET /

16

12. Accept the default for “stage” and press “create”

17

13. Deploy the API

18

Upon deployment, accept to create a “test” (or other name) stage.

19

A deployment URL will become visible, pick “deploy”, you’ll be asked to create a “stage”.

20

Repeat the deploy to the just named stage (for example “test”).

21

Make sure the request URL matches the API route

h�ps://6jj9jei6wc.execute-api.us-east-1.amazonaws.com/test/ [CORRECT]

is different from

h�ps://6jj9jei6wc.execute-api.us-east-1.amazonaws.com/test [WRONG]

For query_string, don’t forget the proper format (an example follows):

h�ps://<your id>.execute-api.us-east-1.amazonaws.com/<your stage name>/?city=Lisbon

