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ML - Introduction
• ML?

– Machine Learning
– Predictive Analytics
– Statistical Learning

• Subjects
– Computer Science
– Statistics

• ML = extracting knowledge from data
• Examples

– Recommender systems
• Which music to listen to (Spotify)
• Which videos to watch (Netflix)

– Data-driven research
• Astronomy (finding planets)
• DNA analysis



ML - contrast
• Early A.I. systems

– "Expert" systems
• Hardcoded rules
• Feasible

– When humans have a good understanding of the process
• Very specific

– The logic required is specific to a single domain and task
– Examples where it might work:

• Fighting email spam with blacklists
• ?

– Examples where it will fail
• Detecting human faces in photos
• In general, processes where it is very hard to identify a set of rules 

and/or where the whole is more than the sum of its parts
• ML is "learning by example"

– With enough examples, a solution for the task arises



Supervised ML
• Assist on decision-making by generalization from 

examples
• Supervised learning

– Algorithms that learn from supervised (input, desired output) 
pairs

– Researcher provides pairs (input, desired output)
• For example, pictures with animals and the label "dog", for some
• For example, a list of emails and the label "spam" for some

– Algorithm automatically finds how to reach the output, from 
the input

• In particular, for never seen inputs
• The algorithm does "predictions" with a level of probabilistic 

certainty
– The "supervision" (creating the dataset) is hard work 
– Well understood
– Measurable performance



Supervised ML - more examples
• Handwritten digits recognition

– Inputs: scans of handwritten digits 
– Outputs: their correct values
– To create a dataset for building a ML model: collect, collect...

• Medical diagnosis from images
– Is a tumor benign or not?

• Inputs: images of tumors
• Outputs: the correct classification of the tumors
• To create a dataset for building a ML model: database of medical images + 

assessment by experts

• Detecting fraud in financial transactions
– Inputs: records of financial transactions
– Outputs: their classification as "fraud", or not
– To create a DB for building a ML model: logs + the users' reports



Supervised ML - classification concepts
• Samples are examples of something
• Samples have "features", which are measurements of 

properties/attributes in them
• A collection of samples is a "dataset"
• If, for every sample, there is a label available

– Then, the dataset is a "labelled dataset" that can be used for 
"supervised learning"

• The idea is to create a function F that, receiving a [new] 
sample, can assign it a classification
– F(sample) = classification
– F(X) = y



Supervised ML - train and test sets
• There are known examples, AKA "samples"

– They capture what is known, observed
• Do NOT use them all for training a model

– Select some samples, say 75%, of all the available data
• This is the "training set"

• Reserve some samples, say 25%, of all the data
– To test the accuracy of the model
– The accuracy is a measure of how correct the model is 

expected to be with new samples
– The test samples, because they are not used in training, 

are like "new samples", although their correct 
classification is known



Supervised ML - some concepts
• Overfitting?

– Model too complex, for the amount of available data
– Fits great the available data

• Predicts great, on the training set
• But if it does so with too many rules, too much complexity...

– It will, probably, not generalize well, to new data

• Underfitting?
– Model too vague, for the amount of available data

• Ideal?
– A balance between fitting the training set, without 

"gluing" to less represented samples, so it has 
opportunity to generalize to new samples



Supervised ML - balancing C/A/G
• Balancing complexity / accuracy, for generalization



Supervised ML using Keras
• In Python, Keras provides easy access to many datasets

– import tensorflow.keras.datasets.mnist as mnist
– import tensorflow.keras.datasets.fashion_mnist as fashion_mnist
– import tensorflow.keras.datasets.cifar10 as cifar10
– import tensorflow.keras.datasets.cifar100 as cifar100

• Take a peek at a them using the code snippet:
tupleForTraining, tupleForTesting = mnist.load_data()
displayRandomNImagesFrom(

tupleForTraining[0],
tupleForTraining[1]

)



One Hot Encoding
• In coding for classification problems, it is usual to use the 

"one hot encoding" technique to represent the possible 
classes

• For example, in the hand written digits classification 
problem, there will be 10 classes (0 to 9)...

• ...that can be encoded as vectors with a single 1 for the 
right switch

• [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] #class 0
• ...
• [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] #class 10
• The above representation is when using numpy.ndarray

objects, which are arrays of floats



Neural Networks can have billions of nodes
• A neuron "fires" a signal to the "next" neuron

– Different signals (inputs) are subject different to "intensities"
• Think of "layers" of nodes

– Each signal that is input to a node is "weighted"
– All the weighted inputs are summed and subjected to an 

activation function, which returns an output, input to all the next



Brain neurons as an approach
• A bio-neuron does not behave as a linear function

– output-via-axon-terminals != constant * input-via-dendrites + bias
– Output is suppressed, until it reaches a level when it then triggers an output

• Threshold

– A function that takes inputs and returns outputs taking into account some 
threshold is an "activation function"; e.g.: sigmoid aka logistic, h-tangent



Neural Networks for Classification in ML
• A computational solution to find the optimal W and b
• Plain algebra could be used
• But there is noise and unknown data
• The theoretical function is actually UNKNOWN

– Probably not linear at all
• The challenge is:

– Find the values for W and b
– That best FIT the data that is actually available

• Find an approximate function that maps inputs to outputs, 
as closely as possible
– But that does NOT just memorize the example mappings
– This is an optimization problem



Matrices multiplication
• Matrix multiplication is

– a binary operation (means 2-operands) that takes a pair of 
matrices and returns another matrix

– NOT commutative (order of operands is relevant)
• The standard way to multiply matrices is called "row by column" 

multiplication
– The element at the i-th row and j-th column of the resulting matrix is calculated 

by multiplying each element of the i-th row of the first matrix by the 
corresponding element of the j-th column of the second matrix and adding the 
results.

– Done for all combinations of rows from the first matrix and columns from the 
second matrix.

– The number of columns in the first matrix must be equal to the number of 
rows in the second matrix. If the first matrix is of dimension m * n, and the 
second matrix is of dimension n * p, then the resulting matrix will be of 
dimension m * p.



Matrices multiplication - examples
• A(2,3) = 

a b c
d e f

• B(2,3) =
g h i
j k l

• AB can NOT be computed



Matrices multiplication - examples
• M1(3,3)
• a@(0,0) b@(0,1) c@(0,2)
• d@(1,0) e@(1,1) f@(1,2)
• g@(2,0) h@(2,1) i@(2,2)
• M2(3,3)
• j@(0,0) k@(0,1) l@(0,2)
• m@(1,0) n@(1,1) o@(1,2)
• p@(2,0) q@(2,1) r@(2,2)

• M1*M2
• a*j + b*m + c*p@(0,0)   a*k + b*n + c*q@(0,1)   a*l + b*o + c*r@(0,2)
• d*j + e*m + f*p@(1,0)   d*k + e*n + f*q@(1,1)   d*l + e*o + f*r@(1,2)
• g*j + h*m + i*p@(2,0)   g*k + h*n + i*q@(2,1)   g*l + h*o + i*r@(2,2)



Linear Equations Representations

This is a graph representation 
of a linear equation
There are "weights"
w1, w2 ... , wn
There are terms or "samples"
x1, x2, ... , xn
There is a crossing point / 
intercept / "bias" b
There is a "node" doing a sum 
and producing an output y



Linear Equations Representations

This is a vectored 
representation of a linear 
equation
There is the W matrix (1D 
array)
W = [w1, ... , wn]
There is a single column 
samples matrix
X = [x1, ... , xn]
There is a crossing point / 
intercept / "bias" b



If a problem can be modeled as a linear 
equation...

Each sample is an image
28 x 28 pixels = 784 pixels in total
Each pixel is a "feature", an 
attribute, of the image
Each feature is to be multiplied by 
a weight

The "Shape" of each example is 
28x28

In the MNIST example project 
there are 60K samples for training 
+ 10K samples for testing the 
training results

Each feature, each x, is a single 
pixel
Quite a long linear equation!



Graph: 784 inputs ; 10 possible outputs (Y); in-between sums and "activation functions" in HL
By cascading (and injecting non-linearity) to the linear sums, a much more complex function is 
possible
The difference (to a linear eq) is that not only the sum happens, but also an activation function
Activation function?
- bio (neuron) inspiration : takes the output signal from the previous cell and converts it to a 
form that can be taken as input to the next cell
- restricts values to controlled intervals
- adds non-linearity to the neural network
- contribute to change in W (the weights) to reduce loss, epoch (iteration) after epoch

Neural Network - Model Example



The linear equation (the sum W.X + b)
The activation function (A)
There is an entire math field dedicated to the study 
of functions that can inject non-linearity and do so 
in a computationally efficient way.

Same A names:
Sigmoid - Historical relevance, less used now. 
Computationally expensive, non-zero centered 
output, derivative always in 0..0.25
HTangent - a zero-centered (f(0)=0) sigmoid
ReLU - Rectified Linear Unit : f(x) = max(0,x)

So, at each node of each HL



References
• Free book on the math of ML:

– http://statweb.stanford.edu/~tibs/ElemStatLearn/
• scikit-learn ML library

– https://scikit-learn.org/stable/

http://statweb.stanford.edu/~tibs/ElemStatLearn/
https://scikit-learn.org/stable/

