Artificial Intelligence

Intro to M achine Learning (M L)

1

ML - Introduction

- ML?
- M achine Learning
- Predictive Analytics
- Statistical Learning
- Subjects
- Computer Science
- Statistics
- ML =extracting knowledge from data
- Examples
- Recommender systems
- Which music to listen to (Spotify)
- Which videos to watch (Netflix)
- Data-driven research
- Astronomy (finding planets)
- DNA analysis

ML-contrast

- Early A.I. systems
- "Expert" systems
- Hardcoded rules
- Feasible
- When humans have a good understanding of the process
- Very specific
- The logic required is specific to a single domain and task
- Examples where it might work:
- Fighting email spam with blacklists
-?
- Examples where it will fail
- Detecting human faces in photos
- In general, processes where it is very hard to identify a set of rules and/or where the whole is more than the sum of its parts
- ML is "learning by example"
- With enough examples, a solution for the task arises

Supervised ML

- Assist on decision-making by generalization from examples
- Supervised learning
- Algorithms that learn from supervised (input, desired output) pairs
- Researcher provides pairs (input, desired output)
- For example, pictures with animals and the label "dog", for some
- For example, a list of emails and the label "spam" for some
- Algorithm automatically finds how to reach the output, from the input
- In particular, for never seen inputs
- The algorithm does "predictions" with a level of probabilistic certainty
- The "supervision" (creating the dataset) is hard work
- Well understood
- M easurable performance

Supervised ML - more examples

- Handwritten digits recognition
- Inputs: scans of handwritten digits
- Outputs: their correct values
- To create a dataset for building a M L model: collect, collect...
- Medical diagnosis from images
- Is a tumor benign or not?
- Inputs: images of tumors
- Outputs: the correct classification of the tumors
- To create a dataset for building a ML model: database of medical images + assessment by experts
- Detecting fraud in financial transactions
- Inputs: records of financial transactions
- Outputs: their classification as "fraud", or not
- To create a DB for building a M L model: logs + the users' reports

Supervised ML - classification concepts

- Samples are examples of something
- Samples have "features", which are measurements of properties/attributes in them
- A collection of samples is a "dataset"
- If, for every sample, there is a label available
- Then, the dataset is a "labelled dataset" that can be used for "supervised learning"
- The idea is to create a function F that, receiving a [new] sample, can assign it a classification
- F(sample) =classification
$-F(X)=y$

Supervised M L - train and test sets

- There are known examples, AKA "samples"
- They capture what is known, observed
- Do NOT use them all for training a model
- Select some samples, say 75%, of all the available data
- This is the "training set"
- Reserve some samples, say 25%, of all the data
- To test the accuracy of the model
- The accuracy is a measure of how correct the model is expected to be with new samples
- The test samples, because they are not used in training, are like "new samples", although their correct classification is known

Supervised ML - some concepts

- Overfitting?
- M odel too complex, for the amount of available data
- Fits great the available data
- Predicts great, on the training set
- But if it does so with too many rules, too much complexity... - It will, probably, not generalize well, to new data
- Underfitting?
- M odel too vague, for the amount of available data
- Ideal?
- A balance between fitting the training set, without "gluing" to less represented samples, so it has opportunity to generalize to new samples

Supervised ML - balancing C/A/G

- Balancing complexity / accuracy, for generalization

Supervised M L using Keras

- In Python, Keras provides easy access to many datasets
- import tensorflow.keras.datasets.mnist as mnist
- import tensorflow.keras.datasets.fashion_mnist as fashion_mnist
- import tensorflow.keras.datasets.cifar10 as cifar10
- import tensorflow.keras.datasets.cifar100 as cifar100
- Take a peek at a them using the code snippet: tupleForTraining, tupleForTesting = mnist.load_data() displayRandomNImagesFrom(tupleForTraining[0], tupleForTraining[1]
)

One Hot Encoding

- In coding for classification problems, it is usual to use the "one hot encoding" technique to represent the possible classes
- For example, in the hand written digits classification problem, there will be 10 classes (0 to 9)...
- ...that can be encoded as vectors with a single 1 for the right switch
- [1.0.0.0.0.0.0.0.0.0.] \#class 0
- [0.0.0.0.0.0.0.0.0.1.] \#class 10
- The above representation is when using numpy.ndarray objects, which are arrays of floats

Neural Networks can have billions of nodes

- A neuron "fires" a signal to the "next" neuron
- Different signals (inputs) are subject different to "intensities"
- Think of "layers" of nodes
- Each signal that is input to a node is "weighted"
- All the weighted inputs are summed and subjected to an activation function, which returns an output, input to all the next
layer 1

inputs

Brain neurons as an approach

- A bio-neuron does not behave as a linear function
- output-via-axon-terminals !=constant * input-via-dendrites +bias
- Output is suppressed, until it reaches a level when it then triggers an output
- Threshold
- A function that takes inputs and returns outputs taking into account some threshold is an "activation function"; e.g.: sigmoid aka logistic, h-tangent

Neural Networks for Classification in ML

- A computational solution to find the optimal W and b
- Plain algebra could be used
- But there is noise and unknown data
- The theoretical function is actually UNKNOWN
- Probably not linear at all
- The challenge is:
- Find the values for W and b
- That best FIT the data that is actually available
- Find an approximate function that maps inputs to outputs, as closely as possible
- But that does NOT just memorize the example mappings
- This is an optimization problem

M atrices multiplication

- M atrix multiplication is
- a binary operation (means 2-operands) that takes a pair of matrices and returns another matrix
- NOT commutative (order of operands is relevant)
- The standard way to multiply matrices is called "row by column" multiplication
- The element at the i-th row and j-th column of the resulting matrix is calculated by multiplying each element of the i-th row of the first matrix by the corresponding element of the j-th column of the second matrix and adding the results.
- Done for all combinations of rows from the first matrix and columns from the second matrix.
- The number of columns in the first matrix must be equal to the number of rows in the second matrix. If the first matrix is of dimension $m * \mathbf{n}$, and the second matrix is of dimension $\mathbf{n} * p$, then the resulting matrix will be of dimension m * .

M atrices multiplication - examples

- $A(2,3)=$
abc
def
- $\mathrm{B}(2,3)=$ ghi
jkI
- AB can NOT be computed

M atrices multiplication - examples

- M1(3,3)
- a@(0,0) b@(0,1) c@(0,2)
- d@(1,0) e@(1,1) f@(1,2)
- \quad @ $(2,0) \mathrm{h} @(2,1)$ @ $(2,2)$
- M2(3,3)
- j@(0,0) k@(0,1) @ (0,2)
- m@(1,0) n@(1,1) o@(1,2)
- $\mathrm{p} @(2,0) \mathrm{q} @(2,1) \mathrm{r} @(2,2)$
- M1*M2
- $a^{*} j+b^{*} m+c^{*} p @(0,0) \quad a^{*} k+b^{*} n+c^{*} q @(0,1) \quad a^{*} \mid+b^{*} 0+c^{*}$ @ $(0,2)$
- $d^{*} j+e^{*} m+f * p @(1,0) \quad d^{*} k+e^{*} n+f * q @(1,1) \quad d^{*} \mid+e^{*} 0+f * r @(1,2)$
- $\mathrm{g}^{*} j+h^{*} m+i^{*} p @(2,0)$ g$^{*} k+h^{*} n+i^{*} q @(2,1) \quad g^{*} \mid+h^{*} 0+i^{*} \mathrm{r} @(2,2)$

Linear Equations Representations

This is a graph representation of a linear equation
There are "weights"

$$
y=w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+b
$$

w1, w2 ... wn
There are terms or "samples"
x1, x2, ... xn

Linear Equations Representations

Vectorized Implementation

Where $W=\left[\begin{array}{lll}w_{1} & w_{2} & w_{3}\end{array}\right]$

$$
Y=W \cdot X+b
$$

This is a vectored representation of a linear equation
There is the W matrix (1D array)
W = [w1, ... wn $]$
There is a single column
samples matrix
$X=[x 1, \ldots, x n]$
There is a crossing point / intercept / "bias" b

If a problem can be modeled as a linear equation...

Neural Network - M odel Example

Graph: 784 inputs ; 10 possible outputs (Y); in-between sums and "activation functions" in HL By cascading (and injecting non-linearity) to the linear sums, a much more complex function is possible
The difference (to a linear eq) is that not only the sum happens, but also an activation function Activation function?

- bio (neuron) inspiration : takes the output signal from the previous cell and converts it to a form that can be taken as input to the next cell
- restricts values to controlled intervals
- adds non-linearity to the neural network
- contribute to change in \mathbf{W} (the weights) to reduce loss, epoch (iteration) after epoch arturmarques.com

So, at each node of each HL

The linear equation (the sum W. $X+b$)
The activation function (A)
There is an entire math field dedicated to the study of functions that can inject non-linearity and do so in a computationally efficient way.

Same A names:
Sigmoid - Historical relevance, less used now.
Computationally expensive, non-zero centered output, derivative always in $0 . .0 .25$
HTangent - a zero-centered $(f(0)=0)$ sigmoid
ReLU - Rectified Linear Unit : $f(x)=\max (0, x)$

References

- Free book on the math of ML:
- http://statweb.stanford.edu/-tibs/ElemStatLearn/
- scikit-learn M L library
- https://scikit-learn.org/stable/

