Artificial Intelligence

Bayes - for assisting search

Bayes rule : $P(A \mid B)=P(B \mid A) * P(A) / P(B)$

- Purpose:
- To compute the probability of something being true, given new information
- $P(A \mid B)=P(B \mid A) * P(A) / P(B)$
- $P(A \mid B)$
- "The posterior"
- The probability of A, given B
- The probability of A being true, knowing B is true
- $P(B \mid A)$
- "The likelihood"
- The probability of B being true, knowing A is true
- A - the hypothesis
- "The prior"
- The probability of A being true, regardless of everything else
- B - "the marginal likelihood"
- The new information
- The probability of B being true, regardless of everything else

Bayes rule : $P(A \mid B)=P(B \mid A) * P(A) / P(B)$

- Example 1 : (very) inaccurate test T for disease D
- Goal: know how to read the notation
- There is a test (T) for a disease (D). The test is not always accurate.
- Odds of someone (randomly selected from the pop) who tested positive with T, to have \mathbf{D} ?
- Bayes can help: $\mathbf{P}(\mathbf{D} \mid \mathrm{T}+)=P(T+\mid \mathrm{D}) * P(\mathrm{D}) / \mathrm{P}(\mathrm{T}+)$
- $P(D \mid T+)=$ the odds someone has D, knowing that he got a positive test ($T+$)
- $\quad P(T+\mid D)=$ the odds of someone getting a positive test ($T+$), knowing that indeed has D
- $\quad P(D)=$ the odds of someone having D, regardless of everything else (for example, regardless of having been tested, or not)
- $\mathrm{P}(\mathrm{T}+$) - the odds of someone getting a $\mathrm{T}+$, regardless of everything else (for example, regardless of being sick with D, or not)
- Imagine the following data being available, after a study:
- 1000 people having D took the test T
- There were 800 T+
$-P(T+\mid D)=800 / 1000=0.8$
- Imagine that the following data is known, from the overall population:
- 50 out of every 10000 people have D ("natural occurrence")
- $P(D)=50 / 10000=5 / 1000=0.005$
- Further studies found $\mathrm{P}(\mathrm{T}+)$ regardless of "everything" (including being sick with D)
$-P(T+)=100 / 1000=0.1$
- $\quad P(D \mid T+)=0.8 * 0.005 / 0.1=0.8 * 0.05=0.04$

Bayes rule, example 2

2 approaches : intuitive $\& P(A \mid B)=P(B \mid A) * P(A) /$ denom

- Example 2: Inaccurate test T for disease D, "intuitive approach" +"Bayesian rule approach"
- Goal: to observe both an "intuitive" and a Bayes rule based approach
- D has a natural incidence of $1 / 1000=0.001$
$-P(D)=0.001$
- There is a test (T) for a disease (D).
- The test is not perfect
- The test does NOT produce false negatives
- Anyone, who has the disease, will test positive
- $\mathbf{P}(\mathbf{T}+\mid \mathbf{D})=1$ \#everyone who has the disease will test positive
- The test CAN produce false positives, with a known frequency of 5%.
- Some, who do NOT have the disease, might test positive
- P(T+| not D) =0.05 \#5\% false positives
- Odds of someone, randomly selected from the population, having tested positive, to have D ?
- Compute P(D|T+)

$\mathrm{P}(\mathrm{D} \mid \mathrm{T}+)$ an "intuitive approach"

- What are the odds of someone, randomly selected from the population, having tested positive, to have D?
- $P(D \mid T+)$?
- Imagine a random selection of 1000 people from the population
- How many do we expect to have the disease? Natural incidence is $1 / 1000$, so 1 in 1000
- $P(D)=0.001$
- How many do we expect to NOT have the disease? 999 in 1000
- $P($ not $D)=1-P(D)=1-0.001=0.999$
- How many false positives? P(T+| not D)
- $\mathrm{P}(\mathrm{T}+\mid \operatorname{not} \mathrm{D})=0.05$
- 0.05 * $999=49.95 \sim 50$ people will get FALSE T+
- How many positive tests in total, regardless of correct, or not? P(T+)
- \# $(T+)=1$ (from the prior known natural occurrence) +50 (wrongly estimated) $=$ 51
- Back to the original question $P(D \mid T+)$?
- Now we intuitively know $P(D \mid T+)=1 / 51=\sim \mathbf{0 . 0 1 9 6}$
$P(D \mid T+)$ by the Bayes rule
$P(D \mid T+)=P(D) * P(T+\mid D) / \operatorname{denom}$
denom $=P(D)^{* P(T+\mid D)+P(\text { not } D) * P(T+\mid \text { not } D)}$
- Odds of someone, randomly selected from the population, having tested positive, to have D ?
- $P(D \mid T+)$?
- Imagine a random selection of 1000 people from the population
- How many do we expect to have the disease? Natural incidence is $1 / 1000$
- $P(D)=0.001$
- How many do we expect to NOT have the disease?
- $P($ not $D)=1-P(D)=1-0.001=0.999$
- How many false positives?
- $P(T+\mid$ not $D)=0.05$
- Back to the original question $\mathrm{P}(\mathrm{D} \mid \mathrm{T}+$) ?
- $\mathbf{P (D | T}+)=\mathbf{P (D) * P (T + D) / d e n o m ~}$
- denom $=P(D) * P(T+\mid D)+P($ not $D) * P(T+\mid$ not $D)$
- $P(D)=0.001$
- $P(T+D)=1$
- $\quad P($ not $D)=1-P(D)=1-0.001=0.999$
- $P(T+\mid$ not $D)=0.05$
- denom $=0.001 * 1+0.999 * 0.05=0.001+0.999 * 0.05=0.05095$
- $\quad P(D \mid T+)=0.001 * 1 /$ denom $=0.001 / 0.05095 \sim 0.0196$

P(D|T+) by the Bayes rule $\mathbf{P}(\mathbf{D} \mid \mathbf{T}+)=\mathbf{P}(\mathbf{D}) * \mathbf{P}(\mathbf{T}+\mathbf{D}) / \mathbf{P}(\mathbf{T}+)$

- Odds of someone, randomly selected from the population, having tested positive, to have D ?
- $P(D \mid T+)$?
- $P(D \mid T+)=P(T+D) * P(D) / P(T+)$
- Known data
- $P(D)=0.001 ; P(T \mid D)=1 ; P($ not $D)=1-P(D)=1-0.001=0.999 ; P(T+\mid$ not $D)=0.05$
- $P(D \mid T+)=P(T+\mid D) * P(D) / P(T+)=1 * P(D) / P(T+)=P(D) / P(T+)$
- $P(D)$ is known ; $P(T+)$ must be found
- By "marginalization":
$-P(T+)=P(T+$ and $D)+P(T+$ and not $D)$ \# bad idea to formulate this way
- $\mathbf{P (T +)}=\mathbf{P (D}$ and $\mathbf{T}+)+\mathbf{P (n o t} \mathbf{D}$ and $\mathbf{T}+$) \# better to formulate this way bc it starts with the prior $P(D)$
- By the "multiplication rule":
- $\mathbf{P}(\mathbf{a}$ and $\mathbf{b})=\mathbf{P}(\mathbf{a}) * \mathbf{P}(\mathbf{b} \mid \mathbf{a})$ \# necessary for each parcel of $\mathrm{P}(\mathrm{T}+)$
$-P(a$ and $b)=P(b$ and $a)=P(b) * P(a \mid b)$
- So, regarding the 2 parcels from the multiplication rule:
- $P(D$ and $T+)=P(D) * P(T+\mid D)=0.001 * 1=0.001$
- $\mathbf{P}($ not \mathbf{D} and $\mathrm{T}+)=\mathrm{P}($ not D$) * P(T+\mid$ not D$)=0.999 * 0.05$
- Meaning
- $P(D \mid T+)=P(D) / P(T+)=0.001 /(0.001+0.999 * 0.05)=0.001 /(0.001+0.04995)=0.019627085$

Bayes helping the search for "X"

- Search [Python] game where "thing" X is missing
- A finite set of N search areas/regions are considered as possible locations where X might be
- R1 .. Rn
- Initial probabilities are assigned to each possible search area
- P1 .. Pn
- Initial "Search Effectiveness Probabilities" (SEP) will depend on the initial search efforts
- SEP1 .. SEPn
- A search effort for X @Rn can fail: X might be at the searched area Rn, but NOT be found, even with high SEP
- $\mathrm{P}(\mathrm{X} @ \mathrm{Rn})=$ Pn * (1-SEPn) / sumForAllRegionsN (Pn * (1-SEPn))

References

- https://courses.lumenlearning.com/waymakermath4libarts /chapter/bayes-theorem/

