
Artificial Intelligence

Bayes - for assisting search



Bayes rule : P(A|B) = P(B|A)*P(A)/P(B)
• Purpose:

– To compute the probability of something being true, given new information

• P (A|B) = P(B|A) * P(A) / P(B)
• P(A|B)

– "The posterior"
– The probability of A, given B
– The probability of A being true, knowing B is true

• P(B|A)
– "The likelihood"
– The probability of B being true, knowing A is true

• A - the hypothesis
– "The prior"
– The probability of A being true, regardless of everything else

• B - "the marginal likelihood"
– The new information
– The probability of B being true, regardless of everything else



Bayes rule : P(A|B) = P(B|A)*P(A)/P(B)
• Example 1 : (very) inaccurate test T for disease D

– Goal: know how to read the notation

• There is a test (T) for a disease (D). The test is not always accurate.
• Odds of someone (randomly selected from the pop) who tested positive with T, to have D?
• Bayes can help: P(D|T+) = P(T+|D) * P(D)/P(T+)
• P(D|T+) = the odds someone has D, knowing that he got a positive test (T+)
• P(T+|D) = the odds of someone getting a positive test (T+), knowing that indeed has D
• P(D) = the odds of someone having D, regardless of everything else (for example, regardless of having 

been tested, or not)
• P(T+) - the odds of someone getting a T+, regardless of everything else (for example, regardless of being 

sick with D, or not)
• Imagine the following data being available, after a study:

– 1000 people having D took the test T
– There were 800 T+
– P(T+|D) = 800/1000 = 0.8

• Imagine that the following data is known, from the overall population:
– 50 out of every 10000 people have D ("natural occurrence")
– P(D) = 50/10000 = 5/1000 = 0.005

• Further studies found P(T+) regardless of "everything" (including being sick with D)
– P(T+) = 100/1000 = 0.1

• P(D|T+) = 0.8 * 0.005/0.1 = 0.8 * 0.05 = 0.04



Bayes rule, example 2
2 approaches : intuitive & P(A|B) = P(B|A)*P(A)/denom

• Example 2: Inaccurate test T for disease D, "intuitive approach" + "Bayesian rule 
approach"
– Goal: to observe both an "intuitive" and a Bayes rule based approach

• D has a natural incidence of 1/1000 = 0.001
– P(D) = 0.001

• There is a test (T) for a disease (D).
– The test is not perfect
– The test does NOT produce false negatives

• Anyone, who has the disease, will test positive
• P(T+|D) = 1 #everyone who has the disease will test positive

– The test CAN produce false positives, with a known frequency of 5%.
• Some, who do NOT have the disease, might test positive
• P(T+|not D) = 0.05 #5% false positives

• Odds of someone, randomly selected from the population, having tested positive, to 
have D?
– Compute P(D|T+)



P(D|T+) an "intuitive approach"
• What are the odds of someone, randomly selected from the population, having 

tested positive, to have D?
– P(D|T+) ?

• Imagine a random selection of 1000 people from the population
– How many do we expect to have the disease? Natural incidence is 1/1000, so 1 

in 1000
• P(D) = 0.001

– How many do we expect to NOT have the disease? 999 in 1000
• P(not D) = 1-P(D) = 1-0.001 = 0.999

– How many false positives? P(T+|not D)
– P(T+|not D) = 0.05

• 0.05 * 999 = 49.95 ~ 50 people will get FALSE T+
– How many positive tests in total, regardless of correct, or not? P(T+)
– #(T+) = 1 (from the prior known natural occurrence) + 50 (wrongly estimated)  = 

51
– Back to the original question P(D|T+) ?

• Now we intuitively know P(D|T+) = 1/51 = ~ 0.0196



P(D|T+) by the Bayes rule
P(D|T+) = P(D)*P(T+|D) / denom

denom = P(D)*P(T+|D) + P(not D)*P(T+|not D)
• Odds of someone, randomly selected from the population, having tested positive, to have D?

– P(D|T+) ?
• Imagine a random selection of 1000 people from the population

– How many do we expect to have the disease? Natural incidence is 1/1000
• P(D) = 0.001

– How many do we expect to NOT have the disease?
• P(not D) = 1-P(D) = 1-0.001 = 0.999

– How many false positives? 
• P(T+|not D) = 0.05

– Back to the original question P(D|T+) ?
• P(D|T+) = P(D)*P(T+|D) / denom
• denom = P(D)*P(T+|D) + P(not D)*P(T+|not D)
• P(D) = 0.001
• P(T+|D) = 1
• P(not D) = 1-P(D) = 1-0.001 = 0.999
• P(T+|not D) = 0.05
• denom = 0.001 * 1 + 0.999 * 0.05 = 0.001 + 0.999*0.05 = 0.05095
• P(D|T+) = 0.001 *1 / denom = 0.001 / 0.05095 ~ 0.0196



P(D|T+) by the Bayes rule 
P(D|T+) = P(D)*P(T+|D)/P(T+)

• Odds of someone, randomly selected from the population, having tested positive, to have D?
– P(D|T+) ?

• P(D|T+) = P(T+|D)*P(D)/P(T+)
• Known data

– P(D) = 0.001 ; P(T+|D) = 1 ; P(not D) = 1-P(D) = 1-0.001 = 0.999 ; P(T+|not D) = 0.05
• P(D|T+) = P(T+|D)*P(D)/P(T+) = 1*P(D)/P(T+) = P(D)/P(T+) 
• P(D) is known ; P(T+) must be found
• By "marginalization":

– P(T+) = P(T+ and D) + P(T+ and not D) # bad idea to formulate this way
– P(T+) = P(D and T+) + P(not D and T+) # better to formulate this way bc it starts with the prior P(D)

• By the "multiplication rule":
– P(a and b) = P(a) * P(b|a) # necessary for each parcel of P(T+)
– P(a and b) = P(b and a) = P(b)*P(a|b)

• So, regarding the 2 parcels from the multiplication rule:
– P(D and T+) = P(D)*P(T+|D) = 0.001 * 1 = 0.001
– P(not D and T+) = P(not D) * P(T+|not D) = 0.999 * 0.05

• Meaning
– P(D|T+) = P(D) / P(T+) = 0.001 / ( 0.001 + 0.999*0.05) = 0.001 / (0.001 + 0.04995) = 0.019627085



Bayes helping the search for "X"
• Search [Python] game where "thing" X is missing
• A finite set of N search areas/regions are considered as possible 

locations where X might be
– R1 .. Rn

• Initial probabilities are assigned to each possible search area
– P1 .. Pn

• Initial "Search Effectiveness Probabilities" (SEP) will depend on the 
initial search efforts
– SEP1 .. SEPn

• A search effort for X @Rn can fail: X might be at the searched area Rn, 
but NOT be found, even with high SEP

• P(X@Rn) = Pn * (1-SEPn) / sumForAllRegionsN (Pn * (1-SEPn))
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