Artificial Intelligence

Propositional Logic
Playing with it in Python



Model

e Model?

— Set of Boolean propositions
— Set of assignments

 Common representations
-{xy}

* Meaning a model where x is True and y is also True
« Any other proposition not represented is assumed False

— x/True y/True
 Meaning a model where x is True, y Is also True
* No other propositions exist
e S0:
—{ X,y } Is set of assignments for the propositions { x, y, z }
« Because, in this notation, omitted propositions are assumed False

— X/True y/True is NOT a set of assignments for { x, y, z }
 Because is makes not assignment to z



Is an expression/formula satisfiable?

e Yes, If there I1s a model that makes it True

 Finding If there is a model that makes an expression
SATisfiable s the "SAT problem"”



Model |= Satisfaction (SAT)

Left side

— Model / assignments
Right side

— Boolean expression
— Logical formula

Satisfaction?
— If the assignments make the expression True
 "the assignments satisfy the expression"
Exercises with M = {x/True, y/False} - signal the
satisfaction case(s)
— M]=(x=>y)
— M|=(xand y)
- M=y
— M|=(x ory)

artiurmarques.co



Model |= Satisfaction (SAT)

 (solution) Exercise with M = {x/True, y/False} - signal
the satisfaction case(s)

— M|=(x=>y)
— M]=(xand y)
- M=y

— M|=(xory)



CNF = Conjunctive Normal Form

* Any propositional formula can be represented in CNF

o What is CNF?
— ANDs of ORs, of literals
— Literal? A variable or its negation

— A formula in CNF Is a conjunction of 1+ clause(s), each a
disjunction of literals

— Example:
« (AORB) AND (NOT AOR C) AND B

* In John McCarthy's LISP notation:
— (and (or A B) (or (not A) C) B)

 Why is CNF important?
— Any propositional formula can be in CNF
— The DPLL algorithm for the SAT problem operates on CNF



DPLL = Davis—Putnam-Logemann-Loveland

 What is the DPPL algorithm?

— a complete, backtracking-based search algorithm for deciding
the satisfiability of propositional logic formulas in CNF

e Recursive
— Splits the problems into smaller sub-problems

— Searches for the assignments that would make a formula
satisfiable

e Some related concepts

— "pure literal” - a Boolean var that appears with only one
polarity (never negated or always negated)

— "pure literal elimination™ - pure literals can be assigned in a
way that makes all clauses containing them true, so they do
not constraint the search and can be eliminated

A form of simplification



Logical consequence (or "entailment")

AKA Logical Implication

Llexp l,...,Lexpn|=Rexp1,...,Rexpn

— L for "left"

— R for "right"

— Assume the , reads AND
All the models that satisfy the left-side, must also
satisfy the right-side

— But the right-side might satisfy more models
Exercise: which are logical consequences?

- (p=>0).q |=p
—(pandq) |=p
—(porqg)|=p

—(porq), (notp) |=q
—(P=>q), p I=1




Logical consequence

* (solution) Exercise: which are logical consequences?
—(p=>0),q |=p
—(pandq) |=p
—(porq) |=p
—(porq), (notp) |=9
—(P=>0), p =19




Logical equivalence
_/// R
_|=R
R|=L
Both must happen
Exercise - signal the logical equivalence case(s)

((mu) Vo) = (-(u A (-v)))




Logical equivalence

 (solution) Exercise - signal the logical equivalence
case(s)

o @Left, equivalent
e @Right, not equivalent

((-u)Vv)=(-(uA(-v)))

(aNn(bVe)=((anb)V(aAc))
(mz) A (y) = (H(zAy))
((=z) V (-w)) = (=(zVy))

((mu) Av) = (=(uV (-v)))



Python challenge

e Check companion file am_logical _helper.py
« Study companion class "LogicalHelper"

» Solve the exercises in these slides using an instance of
the class



