Artificial Intelligence

Propositional Logic
Playing with it in Python

Model

- Model?
- Set of Boolean propositions
- Set of assignments
- Common representations
$-\{x, y\}$
- M eaning a model where x is True and y is also True
- Any other proposition not represented is assumed False
- x/True y/True
- M eaning a model where x is True, y is also True
- No other propositions exist
- So:
$-\{x, y\}$ is set of assignments for the propositions $\{x, y, z\}$
- Because, in this notation, omitted propositions are assumed False
- X/True $y /$ True is NOT a set of assignments for $\{x, y, z\}$
- Because is makes not assignment to z

Is an expression/formula satisfiable?

- Yes, if there is a model that makes it True
- Finding if there is a model that makes an expression SATisfiable is the "SAT problem"

M odel | = Satisfaction (SAT)

- Left side
- Model / assignments
- Right side
- Boolean expression
- Logical formula
- Satisfaction?
- If the assignments make the expression True
- "the assignments satisfy the expression"
- Exercises with $M=\{x /$ True, $y /$ False $\}$ - signal the satisfaction case(s)
$-M \mid=(x=-y)$
$-M \mid=(x$ and $y)$
$-\mathrm{M} \mid=\mathrm{y}$
$-\mathrm{M} \mid=(x$ or y$)$

M odel | = Satisfaction (SAT)

- (solution) Exercise with $M=\{x /$ True, $y /$ False $\}$ - signal the satisfaction case(s)
$-M \mid=(x=>y)$
$-M \mid=(x$ and $y)$
$-M \mid=y$
$-M \mid=(x$ or $y)$

CNF =Conjunctive Normal Form

- Any propositional formula can be represented in CNF
- What is CNF?
- ANDs of ORs, of literals
- Literal? A variable or its negation
- A formula in CNF is a conjunction of $1+$ clause(s), each a disjunction of literals
- Example:
- (A OR B) AND (NOT A OR C) AND B
- In John M cCarthy's LISP notation:
- (and (or A B) (or (not A) C) B)
-Why is CNF important?
- Any propositional formula can be in CNF
- The DPLL algorithm for the SAT problem operates on CNF

DPLL = Davis-Putnam-Logemann-Loveland

- What is the DPPL algorithm?
- a complete, backtracking-based search algorithm for deciding the satisfiability of propositional logic formulas in CNF
- Recursive
- Splits the problems into smaller sub-problems
- Searches for the assignments that would make a formula satisfiable
- Some related concepts
- "pure literal" - a Boolean var that appears with only one polarity (never negated or always negated)
- "pure literal elimination" - pure literals can be assigned in a way that makes all clauses containing them true, so they do not constraint the search and can be eliminated
- A form of simplification

Logical consequence (or "entailment")

- AKA Logical Implication
- Lexp 1, ... , Lexp n | = Rexp 1 , ... , Rexp n
- L for "left"
- R for "right"
- Assume the , reads AND
- All the models that satisfy the left-side, must also satisfy the right-side
- But the right-side might satisfy more models
- Exercise: which are logical consequences?
- $(p=>q), q \mid=p$
$-(p$ and $q) \mid=p$
$-(p$ or $q) \mid=p$
$-(p$ or $q),(\operatorname{not} p) \mid=q$
$-(p=>q), p \mid=q$

Logical consequence

- (solution) Exercise: which are logical consequences?
- $(p=q), q \mid=p$
- $(\mathrm{p}$ and q$) \mid=\mathrm{p}$
- (porq)|=p
$-(p$ or $q),(\operatorname{not} p) \mid=q$
$-(p=>q), p \mid=q$

Logical equivalence

- L/// R
- $\mathrm{L} \mid=\mathrm{R}$
- $\mathrm{R} \mid=\mathrm{L}$
- Both must happen
- Exercise - signal the logical equivalence case(s)
$((\neg u) \vee v) \equiv(\neg(u \wedge(\neg v)))$
$(a \wedge(b \vee c)) \equiv((a \wedge b) \vee(a \wedge c))$
$((\neg x) \wedge(\neg y)) \equiv(\neg(x \wedge y))$
$((\neg x) \vee(\neg y)) \equiv(\neg(x \vee y))$
$((\neg u) \wedge v) \equiv(\neg(u \vee(\neg v)))$

Logical equivalence

- (solution) Exercise - signal the logical equivalence case(s)
- @Left, equivalent
- @Right, not equivalent
$((\neg u) \vee v) \equiv(\neg(u \wedge(\neg v)))$
$(a \wedge(b \vee c)) \equiv((a \wedge b) \vee(a \wedge c))$

$$
\begin{aligned}
& ((\neg x) \wedge(\neg y)) \equiv(\neg(x \wedge y)) \\
& ((\neg x) \vee(\neg y)) \equiv(\neg(x \vee y))
\end{aligned}
$$

$((\neg u) \wedge v) \equiv(\neg(u \vee(\neg v)))$

Python challenge

- Check companion file am_logical_helper.py
- Study companion class "LogicalHelper"
- Solve the exercises in these slides using an instance of the class

