
Artificial Intelligence

Propositional Logic
Playing with it in Python

Model
• Model?

– Set of Boolean propositions
– Set of assignments

• Common representations
– { x, y }

• Meaning a model where x is True and y is also True
• Any other proposition not represented is assumed False

– x/True y/True
• Meaning a model where x is True, y is also True
• No other propositions exist

• So:
– { x, y } is set of assignments for the propositions { x, y, z }

• Because, in this notation, omitted propositions are assumed False
– X/True y/True is NOT a set of assignments for { x, y, z }

• Because is makes not assignment to z

Is an expression/formula satisfiable?
• Yes, if there is a model that makes it True
• Finding if there is a model that makes an expression

SATisfiable is the "SAT problem"

Model |= Satisfaction (SAT)
• Left side

– Model / assignments
• Right side

– Boolean expression
– Logical formula

• Satisfaction?
– If the assignments make the expression True

• "the assignments satisfy the expression"
• Exercises with M = {x/True, y/False} - signal the

satisfaction case(s)
– M|=(x=>y)
– M|=(x and y)
– M|=y
– M|=(x or y)

Model |= Satisfaction (SAT)
• (solution) Exercise with M = {x/True, y/False} - signal

the satisfaction case(s)
– M|=(x=>y)
– M|=(x and y)
– M|=y
– M|=(x or y)

CNF = Conjunctive Normal Form
• Any propositional formula can be represented in CNF
• What is CNF?

– ANDs of ORs, of literals
– Literal? A variable or its negation
– A formula in CNF is a conjunction of 1+ clause(s), each a

disjunction of literals
– Example:

• (A OR B) AND (NOT A OR C) AND B
• In John McCarthy's LISP notation:

– (and (or A B) (or (not A) C) B)

• Why is CNF important?
– Any propositional formula can be in CNF
– The DPLL algorithm for the SAT problem operates on CNF

DPLL = Davis–Putnam–Logemann–Loveland
• What is the DPPL algorithm?

– a complete, backtracking-based search algorithm for deciding
the satisfiability of propositional logic formulas in CNF

• Recursive
– Splits the problems into smaller sub-problems
– Searches for the assignments that would make a formula

satisfiable
• Some related concepts

– "pure literal" - a Boolean var that appears with only one
polarity (never negated or always negated)

– "pure literal elimination" - pure literals can be assigned in a
way that makes all clauses containing them true, so they do
not constraint the search and can be eliminated

• A form of simplification

Logical consequence (or "entailment")
• AKA Logical Implication
• Lexp 1, ... , Lexp n |= Rexp 1 , ... , Rexp n

– L for "left"
– R for "right"
– Assume the , reads AND

• All the models that satisfy the left-side, must also
satisfy the right-side
– But the right-side might satisfy more models

• Exercise: which are logical consequences?
– (p=>q),q |= p
– (p and q) |= p
– (p or q) |= p
– (p or q), (not p) |= q
– (p=>q), p |= q

Logical consequence
• (solution) Exercise: which are logical consequences?

– (p=>q),q |= p
– (p and q) |= p
– (p or q) |= p
– (p or q), (not p) |= q
– (p=>q), p |= q

Logical equivalence
• L /// R
• L |= R
• R |= L
• Both must happen
• Exercise - signal the logical equivalence case(s)

Logical equivalence
• (solution) Exercise - signal the logical equivalence

case(s)
• @Left, equivalent
• @Right, not equivalent

Python challenge
• Check companion file am_logical_helper.py
• Study companion class "LogicalHelper"
• Solve the exercises in these slides using an instance of

the class

