#### **Artificial Intelligence**

#### **An introduction**

arturmarques.com

## Artificial Intelligence (AI) - an intro

- Al is everywhere, all the time: ubiquitous
  - Web search
  - Text auto-completion
  - TTS
  - Generative systems
  - **Games**
- Goals
  - Some applications of Al
  - **What is Al**
  - Know about some schools of thought and some historically relevant people and events
  - What is the Turing test
  - The General Problem Solver (GPS)
  - What are rational agents
  - About building intelligent agents

## **Artificial Intelligence (AI) - an intro**

- Branch of Computer Science (CS)
- Plural definitions of AI, not singular
  - As one consequence, it is hard to regulate
- What is "intelligence"?
  - To answer the question "Can machines think?", Alan Turing proposed the "Turing test"
  - First described in the 1950 paper "Computing Machinery and Intelligence"
    - Full reprint as chapter 3 of the book "Parsing the Turing Test":
      - https://link.springer.com/book/10.1007/978-1-4020-6710-5
- General understanding:
  - Intelligence = Perceive + Analyze + React
- AI?
  - John McCarthy, 1955: "the goal of AI is to develop machines that behave as though they were intelligent"

arturmarques.con

- So, "automation of intelligent behavior"?

# **Artificial Intelligence (AI) - Event**

- where, when? @Dartmouth college, workshop, June to August, 1956
- who [organizers]? John McCarthy, Marvin Minsky, Nathaniel Rochester, Claude Shannon
- goal: explore if/how "every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it"
  - Automatic computers: computers for automation
  - NLP for computer interaction
  - Neuron nets
  - Theory of calculations limits
  - Machine self-improvement
  - Abstractions by machines
  - Randomness and creativity

# What is AI? (again)

- What is Intelligence?
- What is AI?
  - The area of Computer Science (CS) that studies how machines can perform tasks, in a way we would normally classify as "intelligent"
    - Subjective
    - Too broad
  - The area of CS that studies how machines can perform tasks, mimicking human intelligence
    - Much of what we have today would not be Al
    - Bridge to neuroscience
  - Midfield?
    - ?

# The Turing Test

- A test to see if a computer "can think" to mimic human behavior
- "intelligence" = the ability to achieve human-level intelligence during a conversation
- If a machine can trick a human interrogator into thinking it is human, then it is "intelligent"
- Test design
  - 2 separate sides
  - Human "interrogator", interacts with two "respondents", via text interface
    - physical simulation is unnecessary for intelligence
  - One "respondent" is human, the other is a machine
  - The "interrogator" does NOT know which is which
- Implies: NLP, KR, reasoning, learning
- Total Turing Test? (adds vision + movement)

## Approaches, people

- Symbolists intelligence is "symbol manipulation" GOFAI
  - names: Marvin Minksy, John McCarthy, Allen Newell, Herbert A. Simon
  - Logic, Philosophy
    - deduction: A is human + all humans are mortal = ? (A is mortal)
    - induction: A is human + ? = A is mortal (all humans are mortal)
- Connectionists inspired by the structure and function of biological brains
  - names: Geoffrey Hinton, Yann LeCun, Yoshua Bengio
  - Neuroscience
    - Artificial Neural Networks (ANNs)
- "Evolutionaries" inspired by principles of biological evolution
  - names: John Holland, Ingo Rechenberg, Hans-Paul Schwefel
  - Biology
    - Genetic algorithms
- Bayesians use Bayesian statistics and probability
  - names: Judea Pearl (Bayesian networks), Andrew Gelman
  - Statistics
- "Analogizers" focus on analogy-based methods
  - names: Douglas Hofstadter
  - Psychology
    - Techniques to find similarities between examples

# Brain, Body, Mind

- Descartes [1596, 1650]
  - Body vs. Mind
- Phineas Gage [1823, 1860]
  - Body is mind?
- Brain
  - Brainstem (heart control, temperature control) => midbrain (motor functions, basic needs) => limbic system (behavior, emotions) => neocortex (higher-level thoughts)
- From data to "intelligence"
  - Data => processing => information => cognition => knowledge => pattern extraction => understanding => inference => intelligence
- Automation is a real need (AI can help)
  - High volume, multiple-sources, unorganized, ever-changing, time-sensitive

## Brain, Body, Mind





| System    | found in, for example    | behaviors                                                                                              | emotions                                                  |
|-----------|--------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Reptilian | <b>reptiles, mammals</b> | <b>reflex, basic survival</b>                                                                          | <b>none, instinctual drives and<br/>reactions</b>         |
| Limbic    | mammals                  | associative                                                                                            | <b>automatic, "instant",<br/>unreasoned</b>               |
| Neocortex | humans                   | <b>deterministic<br/>understandings, can think<br/>probabilities, can assume<br/>neutral positions</b> | <b>controlled, with a "latency",<br/>complex emotions</b> |

arturmarques.com

#### **Branches**

- Narrow, problem specific, intelligence
  - Logic-based Al
    - statements in logical form, expressing facts and rules
  - **Search** 
    - Path-finding
    - Problem-solving over well-specified state-spaces
    - Heuristics
  - Knowledge Representation
  - Genetic Programming
- General intelligence
- Machine Vision
- Machine Learning (ML)
- Natural Language Processing (NLP)
- Natural Language Generation
- Artificial Creativity

#### How do <agents> "think"?

#### • Humans

- Dual-Process theory
  - automatic, fast vs. slow, deliberate
- Cognitive load theory
  - memory hierarchy
- Multiple intelligences theory
  - plural types of "intelligence"
- Computational theory of the mind
  - Mind as a computer à la Symbolists
- Parallel Distributed Processing
  - à la Connectionists (aka Connectionism)
- Artificial agents
  - Rational behavior?
    - "Follow rules and their logical implications to achieve a desirable outcome" (desirable?)

## The "GPS"

- General Problem Solver (~1959)
- A symbolists' system
  - high-level, explicit representations of problems and logicbased methods for solving them
- Theory of human problem solving stated in the form of a simulation computer program
- **Goal: "universal problem-solving machine"**, using the same base algorithm for every problem (!)
- Created with IPL (Information Processing Language)
- Every problem
  - set of well-formed formulas
  - represented on a directed graph
- Could solve
  - Proofs of mathematical theorems in geometry and logic
  - Not real-world problems

#### **Building "intelligent" agents**



#### Intelligent agent

#### References

- About Descartes
  - <u>https://iep.utm.edu/descmind/</u>
- Alan Turing on "intelligent machines" @ <u>https://github.com/amsm/20190623\_on\_turing\_birthday/raw/m</u> aster/sci\_paper\_alan\_turing\_1948\_intelligent\_machinery.pdf
- The Quest for AI @ <u>https://books.google.com/books?id=nUJdAAAAQBAJ</u>
- https://en.wikipedia.org/wiki/General\_Problem\_Solver